Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 69
1.
Front Endocrinol (Lausanne) ; 15: 1325434, 2024.
Article En | MEDLINE | ID: mdl-38742201

Background: Diabetic foot complications impose a significant strain on healthcare systems worldwide, acting as a principal cause of morbidity and mortality in individuals with diabetes mellitus. While traditional methods in diagnosing and treating these conditions have faced limitations, the emergence of Machine Learning (ML) technologies heralds a new era, offering the promise of revolutionizing diabetic foot care through enhanced precision and tailored treatment strategies. Objective: This review aims to explore the transformative impact of ML on managing diabetic foot complications, highlighting its potential to advance diagnostic accuracy and therapeutic approaches by leveraging developments in medical imaging, biomarker detection, and clinical biomechanics. Methods: A meticulous literature search was executed across PubMed, Scopus, and Google Scholar databases to identify pertinent articles published up to March 2024. The search strategy was carefully crafted, employing a combination of keywords such as "Machine Learning," "Diabetic Foot," "Diabetic Foot Ulcers," "Diabetic Foot Care," "Artificial Intelligence," and "Predictive Modeling." This review offers an in-depth analysis of the foundational principles and algorithms that constitute ML, placing a special emphasis on their relevance to the medical sciences, particularly within the specialized domain of diabetic foot pathology. Through the incorporation of illustrative case studies and schematic diagrams, the review endeavors to elucidate the intricate computational methodologies involved. Results: ML has proven to be invaluable in deriving critical insights from complex datasets, enhancing both the diagnostic precision and therapeutic planning for diabetic foot management. This review highlights the efficacy of ML in clinical decision-making, underscored by comparative analyses of ML algorithms in prognostic assessments and diagnostic applications within diabetic foot care. Conclusion: The review culminates in a prospective assessment of the trajectory of ML applications in the realm of diabetic foot care. We believe that despite challenges such as computational limitations and ethical considerations, ML remains at the forefront of revolutionizing treatment paradigms for the management of diabetic foot complications that are globally applicable and precision-oriented. This technological evolution heralds unprecedented possibilities for treatment and opportunities for enhancing patient care.


Diabetic Foot , Machine Learning , Diabetic Foot/therapy , Humans
2.
J Neurogastroenterol Motil ; 30(2): 143-155, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38576367

Diabetic gastroparesis (DGP) is a common complication of diabetes mellitus, marked by gastrointestinal motility disorder, a delayed gastric emptying present in the absence of mechanical obstruction. Clinical manifestations include postprandial fullness and epigastric discomfort, bloating, nausea, and vomiting. DGP may significantly affect the quality of life and productivity of patients. Research on the relationship between gastrointestinal dynamics and DGP has received much attention because of the increasing prevalence of DGP. Gastrointestinal motility disorders are closely related to a variety of factors including the absence and destruction of interstitial cells of Cajal, abnormalities in the neuro-endocrine system and hormone levels. Therefore, this study will review recent literature on the mechanisms of DGP and gastrointestinal motility disorders as well as the development of prokinetic treatment of gastrointestinal motility disorders in order to give future research directions and identify treatment strategies for DGP.

3.
Int J Biochem Cell Biol ; 170: 106569, 2024 May.
Article En | MEDLINE | ID: mdl-38556159

Micro- and macrovascular complications frequently occur in patients with diabetes, with endothelial dysfunction playing a key role in the development and progression of the complications. For the early diagnosis and optimal treatment of vascular complications associated with diabetes, it is imperative to comprehend the cellular and molecular mechanisms governing the function of diabetic endothelial cells. Mitochondria function as crucial sensors of environmental and cellular stress regulating endothelial cell viability, structural integrity and function. Impaired mitochondrial quality control mechanisms and mitochondrial dysfunction are the main features of endothelial damage. Hence, targeted mitochondrial therapy is considered promising novel therapeutic options in vascular complications of diabetes. In this review, we focus on the mitochondrial functions in the vascular endothelial cells and the pathophysiological role of mitochondria in diabetic endothelial dysfunction, aiming to provide a reference for related drug development and clinical diagnosis and treatment.


Diabetes Mellitus , Vascular Diseases , Humans , Endothelial Cells/metabolism , Diabetes Mellitus/metabolism , Vascular Diseases/metabolism , Mitochondria , Endothelium, Vascular/metabolism
4.
Eur J Med Res ; 29(1): 152, 2024 Mar 04.
Article En | MEDLINE | ID: mdl-38438934

Type 2 diabetes mellitus (T2DM) poses a significant global health burden. This is particularly due to its macrovascular complications, such as coronary artery disease, peripheral vascular disease, and cerebrovascular disease, which have emerged as leading contributors to morbidity and mortality. This review comprehensively explores the pathophysiological mechanisms underlying these complications, protective strategies, and both existing and emerging secondary preventive measures. Furthermore, we delve into the applications of experimental models and methodologies in foundational research while also highlighting current research limitations and future directions. Specifically, we focus on the literature published post-2020 concerning the secondary prevention of macrovascular complications in patients with T2DM by conducting a targeted review of studies supported by robust evidence to offer a holistic perspective.


Coronary Artery Disease , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/complications , Secondary Prevention
5.
Biomed Pharmacother ; 173: 116292, 2024 Apr.
Article En | MEDLINE | ID: mdl-38394848

Single-cell sequencing is a novel and rapidly advancing high-throughput technique that can be used to investigating genomics, transcriptomics, and epigenetics at a single-cell level. Currently, single-cell sequencing can not only be used to draw the pancreatic islet cells map and uncover the characteristics of cellular heterogeneity in type 2 diabetes, but can also be used to label and purify functional beta cells in pancreatic stem cells, improving stem cells and islet organoids therapies. In addition, this technology helps to analyze islet cell dedifferentiation and can be applied to the treatment of type 2 diabetes. In this review, we summarize the development and process of single-cell sequencing, describe the potential applications of single-cell sequencing in the field of type 2 diabetes, and discuss the prospects and limitations of single-cell sequencing to provide a new direction for exploring the pathogenesis of type 2 diabetes and finding therapeutic targets.


Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Humans , Diabetes Mellitus, Type 2/metabolism , Islets of Langerhans/metabolism , Pancreas/metabolism , Insulin-Secreting Cells/metabolism , Gene Expression Profiling
6.
Plant Physiol ; 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38417836

Long non-coding RNAs (lncRNAs) play important roles in various biological processes. However, the regulatory roles of lncRNAs underlying fruit development have not been extensively studied. Pumpkin (Cucurbita spp.) is a preferred model for understanding the molecular mechanisms regulating fruit development because of its variable shape and size and large inferior ovary. Here, we performed strand-specific transcriptome sequencing on pumpkin (Curcurbita maxima 'Rimu') fruits at six developmental stages and identified 5425 reliably expressed lncRNAs. Among the 332 lncRNAs that were differentially expressed during fruit development, MSTRG.44863.1 was identified as a negative regulator of pumpkin fruit development. MSTRG.44863.1 showed a relatively high expression level and an obvious period-specific expression pattern. Transient overexpression and silencing of MSTRG.44863.1 significantly increased and decreased the content of 1-aminocyclopropane carboxylic acid (a precursor of ethylene) and ethylene production, respectively. RNA pull-down and microscale thermophoresis assays further revealed that MSTRG.44863.1 can interact with S-adenosyl-L-methionine synthetase (SAMS), an enzyme in the ethylene synthesis pathway. Considering that ethylene negatively regulates fruit development, these results indicate that MSTRG.44863.1 plays an important role in the regulation of pumpkin fruit development, possibly through interacting with SAMS and affecting ethylene synthesis. Overall, our findings provide a rich resource for further study of fruit-related lncRNAs while offering insight into the regulation of fruit development in plants.

7.
Int J Mol Sci ; 25(2)2024 Jan 22.
Article En | MEDLINE | ID: mdl-38279332

Pollen cells require large amounts of sugars from the anther to support their development, which is critical for plant sexual reproduction and crop yield. Sugars Will Eventually be Exported Transporters (SWEETs) have been shown to play an important role in the apoplasmic unloading of sugars from anther tissues into symplasmically isolated developing pollen cells and thereby affect the sugar supply for pollen development. However, among the 17 CsSWEET genes identified in the cucumber (Cucumis sativus L.) genome, the CsSWEET gene involved in this process has not been identified. Here, a member of the SWEET gene family, CsSWEET5a, was identified and characterized. The quantitative real-time PCR and ß-glucuronidase expression analysis revealed that CsSWEET5a is highly expressed in the anthers and pollen cells of male cucumber flowers from the microsporocyte stage (stage 9) to the mature pollen stage (stage 12). Its subcellular localization indicated that the CsSWEET5a protein is localized to the plasma membrane. The heterologous expression assays in yeast demonstrated that CsSWEET5a encodes a hexose transporter that can complement both glucose and fructose transport deficiencies. CsSWEET5a can significantly rescue the pollen viability and fertility of atsweet8 mutant Arabidopsis plants. The possible role of CsSWEET5a in supplying hexose to developing pollen cells via the apoplast is also discussed.


Arabidopsis , Cucumis sativus , Arabidopsis/genetics , Arabidopsis/metabolism , Cucumis sativus/metabolism , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Hexoses/metabolism , Pollen/genetics , Pollen/metabolism , Saccharomyces cerevisiae/metabolism , Fertility/genetics , Gene Expression Regulation, Plant
8.
Am J Chin Med ; 51(7): 1711-1749, 2023.
Article En | MEDLINE | ID: mdl-37646143

Diabetes mellitus (DM) has become a surge burden worldwide owing to its high prevalence and range of associated complications such as coronary artery disease, blindness, stroke, and renal failure. Accordingly, the treatment and management of DM have become a research hotspot. Mulberry leaves (Morus alba L.) have been used in Traditional Chinese Medicine for a long time, with the first record of its use published in Shennong Bencao Jing (Shennong's Classic of Materia Medica). Mulberry leaves (MLs) are considered highly valuable medicinal food homologs that contain polysaccharides, flavonoids, alkaloids, and other bioactive substances. Modern pharmacological studies have shown that MLs have multiple bioactive effects, including hypolipidemic, hypoglycemic, antioxidation, and anti-inflammatory properties, with the ability to protect islet [Formula: see text]-cells, alleviate insulin resistance, and regulate intestinal flora. However, the pharmacological mechanisms of MLs in DM have not been fully elucidated. In this review, we summarize the botanical characterization, traditional use, chemical constituents, pharmacokinetics, and toxicology of MLs, and highlight the mechanisms involved in treating DM and its complications. This review can provide a valuable reference for the further development and utilization of MLs in the prevention and treatment of DM.


Diabetes Mellitus , Morus , Humans , Morus/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Diabetes Mellitus/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Plant Leaves/chemistry
9.
World J Diabetes ; 14(3): 313-342, 2023 Mar 15.
Article En | MEDLINE | ID: mdl-37035221

BACKGROUND: Diabetic gastroparesis (DGP) is a prevalent complication of diabetes that impairs people's quality of life and places a significant financial burden on them. The gastrointestinal symptoms of DGP patients can be improved by several Traditional Chinese Medicine (TCM) decoctions that have been shown to be effective in treating the disease. There are still many unanswered questions regarding the identification of appropriate therapeutic agents for the treatment of DGP in clinical practice. AIM: To analyze the efficacy of several TCM decoctions in the treatment of DGP using Bayesian network meta-analysis for reference. METHODS: PubMed, EMBASE, Cochrane Library, Web of Science, China National Kno-wledge Infrastructure, The China Biology Medicine DVD, Wanfang, and CQVIP were searched from inception to September 17, 2022, to collect randomized controlled trials (RCTs) about TCM decoctions for DGP. Clinical effects and symptom scores were the primary outcomes. Additionally, we assessed motilin (MOT), somatostatin (SS), gastrin (GAS), gastric emptying rate, gastric emptying time, and adverse drug events as secondary outcomes. RESULTS: A total of 67 eligible RCTs involving 4790 DGP patients and 7 TCM decoctions were included. The results of network meta-analysis (NMA) and surface under the cumulative ranking curve showed that with western medicine (WM) as a common control, the Banxia Xiexin Decoction (BXXD) + WM was most effective in clinical effects and enhancing early satiety scores; the Simo decoction (SMD) + WM was most effective in improving nausea and vomiting scores and anorexia scores, bloating scores; the Chaishao Liujunzi Decoction (CSLJD) was most effective in MOT, the Zhishi Xiaopi Decoction (ZSXPD) was most effective in SS and upgrading emptying rate; the Jianpi Xiaozhi Decoction was most effective in GAS; the CSLJD + WM was most effective in improving gastric emptying time. CONCLUSION: These NMA results suggest that the BXXD + WM and SMD + WM may be one of the potential optimal treatments. Due to various limitations, further large-sample, double-blind, multi-center randomized RCTs are needed.

10.
Cell Death Dis ; 14(3): 186, 2023 03 08.
Article En | MEDLINE | ID: mdl-36882414

The maintenance of iron homeostasis is essential for proper endocrine function. A growing body of evidence suggests that iron imbalance is a key factor in the development of several endocrine diseases. Nowadays, ferroptosis, an iron-dependent form of regulated cell death, has become increasingly recognized as an important process to mediate the pathogenesis and progression of type 2 diabetes mellitus (T2DM). It has been shown that ferroptosis in pancreas ß cells leads to decreased insulin secretion; and ferroptosis in the liver, fat, and muscle induces insulin resistance. Understanding the mechanisms concerning the regulation of iron metabolism and ferroptosis in T2DM may lead to improved disease management. In this review, we summarized the connection between the metabolic pathways and molecular mechanisms of iron metabolism and ferroptosis in T2DM. Additionally, we discuss the potential targets and pathways concerning ferroptosis in treating T2DM and analysis the current limitations and future directions concerning these novel T2DM treatment targets.


Diabetes Mellitus, Type 2 , Ferroptosis , Insulin Resistance , Regulated Cell Death , Humans , Iron
11.
Phytopathology ; 113(5): 858-865, 2023 May.
Article En | MEDLINE | ID: mdl-35906768

Gummy stem blight (GSB), caused by Didymella bryoniae, is a devastating fungal disease of melon worldwide. Breeding GSB-resistant cultivars with host resistance genes is considered the most economic and effective strategy to control this disease. In this study, 260 melon germplasm resources were screened for resistance to GSB, and an inbred line, H55R, that exhibited immunity to GSB was identified. To further understand the resistance mechanism of H55R against GSB, an F2 population was obtained from a cross between the GSB-susceptible line A15 and H55R, and genetic analysis indicated that the GSB resistance in H55R was controlled by a single dominant gene, tentatively named Gsb-7(t). The Gsb-7(t) gene was finally delimited to a 140-kb interval on chromosome 7 using bulked segregant analysis and chromosome walking strategies. Ten putative genes were annotated in this region that contains a wall-associated receptor kinase (WAK) gene MELO3C010403. The MELO3C010403 gene contains two alternative transcripts, MELO3C010403-T1 and MELO3C010403-T2, with five and seven nonsynonymous mutation sites, respectively. Gene expression analysis showed that expression of MELO3C010403-T2 but not MELO3C010403-T1 was significantly induced by D. bryoniae at 24 h postinoculation, indicating that the MELO3C010403-T2 transcript of MELO3C010403 was the most likely candidate gene of Gsb-7(t). Our results offer new genetic resources and will be helpful for the development of GSB-resistant melon cultivars in the future.


Cucurbitaceae , Cucurbitaceae/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Breeding , Disease Resistance/genetics
12.
Biomolecules ; 12(12)2022 11 30.
Article En | MEDLINE | ID: mdl-36551213

The pancreatic duodenum homeobox-1 (PDX-1) is a transcription factor encoded by a Hox-like homeodomain gene that plays a crucial role in pancreatic development, ß-cell differentiation, and the maintenance of mature ß-cell functions. Research on the relationship between PDX-1 and diabetes has gained much attention because of the increasing prevalence of diabetes melitus (DM). Recent studies have shown that the overexpression of PDX-1 regulates pancreatic development and promotes ß-cell differentiation and insulin secretion. It also plays a vital role in cell remodeling, gene editing, and drug development. Conversely, the absence of PDX-1 increases susceptibility to DM. Therefore, in this review, we summarized the role of PDX-1 in pancreatic development and the pathogenesis of DM. A better understanding of PDX-1 will deepen our knowledge of the pathophysiology of DM and provide a scientific basis for exploring PDX-1 as a potential target for treating diabetes.


Diabetes Mellitus , Homeodomain Proteins , Humans , Homeodomain Proteins/genetics , Trans-Activators/genetics , Diabetes Mellitus/drug therapy , Diabetes Mellitus/genetics , Pancreas , Insulin/genetics , Duodenum
13.
Nat Plants ; 8(12): 1394-1407, 2022 12.
Article En | MEDLINE | ID: mdl-36509843

Increasing production efficiency is a top priority in agriculture. Optimal plant architecture is the biological basis of dense planting, high crop yield and labour cost savings, and is thus critical for improving agricultural productivity. In cucurbit crops, most species have elongated internodes, but the path to architecture improvement is still not clear. Here we identified a pumpkin accession with a dominant bushy trait, and found that the associated Bush locus harbours a cucurbit-conserved cis-regulatory element in the 5' untranslated region of a transcription factor gene YABBY1. In cucurbit crops, various B-region deletions enhance the translation of YABBY1, with consequent proportional suppression of stem length in a dose-dependent manner. Depending on different cultivation patterns, the precise deployment of these alleles has significant effects on yield improvement or labour cost saving. Our findings demonstrate that the engineering of the YABBY1 B-region is an efficient strategy to customize plant architecture in cucurbit crops.


Agriculture , Crops, Agricultural , Alleles , Phenotype , Crops, Agricultural/genetics
14.
Comput Struct Biotechnol J ; 20: 5935-5951, 2022.
Article En | MEDLINE | ID: mdl-36382190

Glycolipid metabolism disorder are major threats to human health and life. Genetic, environmental, psychological, cellular, and molecular factors contribute to their pathogenesis. Several studies demonstrated that neuroendocrine axis dysfunction, insulin resistance, oxidative stress, chronic inflammatory response, and gut microbiota dysbiosis are core pathological links associated with it. However, the underlying molecular mechanisms and therapeutic targets of glycolipid metabolism disorder remain to be elucidated. Progress in high-throughput technologies has helped clarify the pathophysiology of glycolipid metabolism disorder. In the present review, we explored the ways and means by which genomics, transcriptomics, proteomics, metabolomics, and gut microbiomics could help identify novel candidate biomarkers for the clinical management of glycolipid metabolism disorder. We also discuss the limitations and recommended future research directions of multi-omics studies on these diseases.

15.
Front Endocrinol (Lausanne) ; 13: 982145, 2022.
Article En | MEDLINE | ID: mdl-36034426

Berberine is a natural active ingredient extracted from the rhizome of Rhizoma Coptidis, which interacts with multiple intracellular targets and exhibits a wide range of pharmacological activities. Previous studies have preliminarily confirmed that the regulation of mitochondrial activity is related to various pharmacological actions of berberine, such as regulating blood sugar and lipid and inhibiting tumor progression. However, the mechanism of berberine's regulation of mitochondrial activity remains to be further studied. This paper summarizes the molecular mechanism of the mitochondrial quality control system and briefly reviews the targets of berberine in regulating mitochondrial activity. It is proposed that berberine mainly regulates glycolipid metabolism by regulating mitochondrial respiratory chain function, promotes tumor cell apoptosis by regulating mitochondrial apoptosis pathway, and protects cardiac function by promoting mitophagy to alleviate mitochondrial dysfunction. It reveals the mechanism of berberine's pharmacological effects from the perspective of mitochondria and provides a scientific basis for the application of berberine in the clinical treatment of diseases.


Berberine , Drugs, Chinese Herbal , Mitochondria , Mitophagy , Rhizome
16.
Front Genet ; 13: 933022, 2022.
Article En | MEDLINE | ID: mdl-35846119

Cucurbita pepo L. is an essential economic vegetable crop worldwide, and its production is severely affected by powdery mildew (PM). However, our understanding of the molecular mechanism of PM resistance in C. pepo is very limited. Long non-coding RNAs (lncRNAs) play an important role in regulating plant responses to biotic stress. Here, we systematically identified 2,363 reliably expressed lncRNAs from the leaves of PM-susceptible (PS) and PM-resistant (PR) C. pepo. The C. pepo lncRNAs are shorter in length and expressed at a lower level than the protein-coding transcripts. Among the 2,363 lncRNAs, a total of 113 and 146 PM-responsive lncRNAs were identified in PS and PR, respectively. Six PM-responsive lncRNAs were predicted as potential precursors of microRNAs (miRNAs). In addition, 58 PM-responsive lncRNAs were predicted as targets of miRNAs and one PM-responsive lncRNA was predicted as an endogenous target mimic (eTM). Furthermore, a total of 5,200 potential cis target genes and 5,625 potential trans target genes were predicted for PM-responsive lncRNAs. Functional enrichment analysis showed that these potential target genes are involved in different biological processes, such as the plant-pathogen interaction pathway, MAPK signaling pathway, and plant hormone signal transduction pathway. Taken together, this study provides a comprehensive view of C. pepo lncRNAs and explores the putative functions of PM-responsive lncRNAs, thus laying the foundation for further study of the regulatory mechanisms of lncRNAs responding to PM.

17.
Front Pharmacol ; 13: 870407, 2022.
Article En | MEDLINE | ID: mdl-35721198

Introduction: Glucose and lipid metabolism disturbances has become the third major disease after cancer and cardio-cerebrovascular diseases. Emerging evidence shows that berberine can effectively intervene glucose and lipid metabolism disturbances, but the underlying mechanisms of this remain unclear. To investigate this issue, we performed metagenomic and metabolomic analysis in a group of normal mice (the NC group), mice with disturbances in glucose and lipid metabolism (the MC group) and mice with disturbances in glucose and lipid metabolism after berberine intervention (the BER group). Result: Firstly, analysis of the clinical indicators revealed that berberine significantly improved the blood glucose and blood lipid of the host. The fasting blood glucose level decreased by approximately 30% in the BER group after 8 weeks and the oral glucose tolerance test showed that the blood glucose level of the BER group was lower than that of the MC group at any time. Besides, berberine significantly reduced body weight, total plasma cholesterol and triglyceride. Secondly, compared to the NC group, we found dramatically decreased microbial richness and diversity in the MC group and BER group. Thirdly, LDA effect size suggested that berberine significantly altered the overall gut microbiota structure and enriched many bacteria, including Akkermansia (p < 0.01), Eubacterium (p < 0.01) and Ruminococcus (p < 0.01). Fourthly, the metabolomic analysis suggested that there were significant differences in the metabolomics signature of each group. For example, isoleucine (p < 0.01), phenylalanine (p < 0.05), and arbutin (p < 0.05) significantly increased in the MC group, and berberine intervention significantly reduced them. The arbutin content in the BER group was even lower than that in the NC group. Fifthly, by combined analysis of metagenomics and metabolomics, we observed that there were significantly negative correlations between the reduced faecal metabolites (e.g., arbutin) in the BER group and the enriched gut microbiota (e.g., Eubacterium and Ruminococcus) (p < 0.05). Finally, the correlation analysis between gut microbiota and clinical indices indicated that the bacteria (e.g., Eubacterium) enriched in the BER group were negatively associated with the above-mentioned clinical indices (p < 0.05). Conclusion: Overall, our results describe that the changes of gut microbiota and metabolites are associated with berberine improving glucose and lipid metabolism disturbances.

18.
Front Physiol ; 13: 822333, 2022.
Article En | MEDLINE | ID: mdl-35330934

The serine/threonine kinase Akt, also known as protein kinase B (PKB), is one of the key factors regulating glucose and lipid energy metabolism, and is the core focus of current research on diabetes and metabolic diseases. Akt is mostly expressed in key metabolism-related organs and it is activated in response to various stimuli, including cell stress, cell movement, and various hormones and drugs that affect cell metabolism. Genetic and pharmacological studies have shown that Akt is necessary to maintain the steady state of glucose and lipid metabolism and a variety of cellular responses. Existing evidence shows that metabolic syndrome is related to insulin resistance and lipid metabolism disorders. Based on a large number of studies on Akt-related pathways and reactions, we believe that Akt can be used as a potential drug target to effectively treat metabolic syndrome.

19.
J Diabetes Res ; 2022: 3448618, 2022.
Article En | MEDLINE | ID: mdl-35242879

The final outcome of diabetes is chronic complications, of which vascular complications are the most serious, which is the main cause of death for diabetic patients and the direct cause of the increase in the cost of diabetes. Type 1 and type 2 diabetes are the main types of diabetes, and their pathogenesis is completely different. Type 1 diabetes is caused by genetics and immunity to destroy a large number of ß cells, and insulin secretion is absolutely insufficient, which is more prone to microvascular complications. Type 2 diabetes is dominated by insulin resistance, leading to atherosclerosis, which is more likely to progress to macrovascular complications. This article explores the pathogenesis of two types of diabetes, analyzes the pathogenesis of different vascular complications, and tries to explain the different trends in the progression of different types of diabetes to vascular complications, in order to better prevent diabetes and its vascular complications.


Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 2/complications , Vascular Diseases/etiology , Adult , Aged , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 2/epidemiology , Female , Humans , Male , Middle Aged , Risk Factors , Vascular Diseases/epidemiology
20.
Front Pharmacol ; 13: 827697, 2022.
Article En | MEDLINE | ID: mdl-35185579

Background: Type 2 diabetes mellitus (T2DM) complicated with dyslipidaemia is associated with a high risk of cardiovascular diseases. The Jiangtang Tiaozhi (JTTZ) recipe is a Chinese herbal formula that has been used to regulate the blood glucose and lipid levels for many years. Interestingly, a previous study has demonstrated its efficacy; however, the associated mechanism remains unclear. We hypothesised that the therapeutic effect of the JTTZ on patients with T2DM may be mediated by the modulation of metabolites secreted by the gut microbiota. This study aims to examine this mechanism. Methods and analysis: This study is a randomised, positive drug parallel-controlled, open-label clinical trial in patients with T2DM and dyslipidaemia. A total of 96 patients will be recruited and randomly assigned to treatment with JTTZ or metformin for 12 weeks. The primary outcome will be the rates of effectively regulated blood glucose and lipid levels (measured with the levels of glycated haemoglobin, fasting plasma glucose, 2-h plasma glucose, triglyceride, and low-density lipoprotein cholesterol). The secondary outcomes will be the changes in body weight, body mass index, and waist circumference and Traditional Chinese Medicine symptom scores. In addition, 16S rRNA gene sequencing will be performed on the gut microbiota obtained from faeces, and metabolomics analysis will be performed based on blood and gut microbiota samples. Intention-to-treat, per-protocol analysis and safety analysis will be performed. Clinical trial registration number: https://clinicaltrials.gov/ct2/show/NCT04623567.

...